Part Number Hot Search : 
NJW1103 FB514 BLV2045N 7545A EL4441CS PC308 EL4441CS FLC103WG
Product Description
Full Text Search
 

To Download IRFB4115PBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  hexfet   power mosfet applications  high efficiency synchronous rectification in smps  uninterruptible power supply  high speed power switching  hard switched and high frequency circuits s d g v dss 150v r ds ( on ) typ. 9.3m ? max. 11m ? i d (silicon limited) 104a absolute maximum ratings symbol parameter units i d @ t c = 25c continuous drain current, v gs @ 10v i d @ t c = 100c continuous drain current, v gs @ 10v i dm pulsed drain current p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v dv/dt peak diode recovery  v/ns t j operating junction and t stg storage temperature range soldering temperature, for 10 seconds (1.6mm from case) mounting torque, 6-32 or m3 screw avalanche characteristics e as (thermally limited) single pulse avalanche energy  mj thermal resistance symbol parameter typ. max. units r jc junction-to-case  ??? 0.40 r cs case-to-sink, flat greased surface 0.50 ??? c/w r ja junction-to-ambient  ??? 62 830 380 18 10lb  in (1.1n  m) a c 300 -55 to + 175 20 2.5 max. 104 74 420   gds gate drain source to-220ab d s d g benefits  improved gate, avalanche and dynamic dv/dt ruggedness  fully characterized capacitance and avalanche soa  enhanced body diode dv/dt and di/dt capability  lead free  rohs compliant, halogen-free     
       
     

 form quantity IRFB4115PBF to-220 tube 50 IRFB4115PBF base part number package type standard pack orderable part number
      
       
     

    repetitive rating; pulse width limited by max. junction temperature.  recommended max eas limit, starting t j = 25c, l = 0.17mh, r g = 25 ? , i as = 100a, v gs =15v.  i sd 62a, di/dt 1040a/s, v dd v (br)dss , t j 175c.  pulse width 400s; duty cycle 2%. s d g  c oss eff. (tr) is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  c oss eff. (er) is a fixed capacitance that gives the same energy as c oss while v ds is rising from 0 to 80% v dss .  when mounted on 1" square pcb (fr-4 or g-10 material). for recom mended footprint and soldering techniques refer to application note #an-994.     
      static @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 150 ??? ??? v ? v ( br ) dss / ? t j breakdown voltage temp. coefficient ??? 0.18 ??? v/c r ds(on) static drain-to-source on-resistance ??? 9.3 11 m ? v gs(th) gate threshold voltage 3.0 ??? 5.0 v i dss drain-to-source leakage current ??? ??? 20 a ??? ??? 250 i gss gate-to-source forward leakage ??? ??? 100 na gate-to-source reverse leakage ??? ??? -100 r g internal gate resistance ??? 2.3 ??? ? dynamic @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units gfs forward transconductance 97 ??? ??? s q g total gate charge ??? 77 120 nc q gs gate-to-source charge ??? 28 ??? q gd gate-to-drain ("miller") charge ??? 26 ??? q sync total gate charge sync. (q g - q gd ) ??? 51 ??? t d(on) turn-on delay time ??? 18 ??? ns t r rise time ??? 73 ??? t d(off) turn-off delay time ??? 41 ??? t f fall time ??? 39 ??? c iss input capacitance ??? 5270 ??? pf c oss output capacitance ??? 490 ??? c rss reverse transfer capacitance ??? 105 ??? c oss eff. (er) effective output capacitance (ener g y related) ??? 460 ??? c oss eff. (tr) effective output capacitance (time related) ??? 530 ??? diode characteristics symbol parameter min. typ. max. units i s continuous source current ??? ??? 104 a (body diode) i sm pulsed source current ??? ??? 420 a (body diode)  v sd diode forward voltage ??? ??? 1.3 v t rr reverse recovery time ??? 86 ??? ns t j = 25c v r = 130v, ??? 110 ??? t j = 125c i f = 62a q rr reverse recovery charge ??? 300 ??? nc t j = 25c di/dt = 100a/s  ??? 450 ??? t j = 125c i rrm reverse recovery current ??? 6.5 ??? a t j = 25c t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) i d = 62a r g = 2.2 ? v gs = 10v  v dd = 98v i d = 62a, v ds =0v, v gs = 10v t j = 25c, i s = 62a, v gs = 0v  integral reverse p-n junction diode. conditions v gs = 0v, i d = 250a reference to 25c, i d = 3.5ma  v gs = 10v, i d = 62a  v ds = v gs , i d = 250a v ds = 150v, v gs = 0v v ds = 150v, v gs = 0v, t j = 125c mosfet symbol showing the v ds = 75v conditions v gs = 10v  v gs = 0v v ds = 50v ? = 1.0 mhz, see fig. 5 v gs = 0v, v ds = 0v to 120v  , see fig. 11 v gs = 0v, v ds = 0v to 120v  conditions v ds = 50v, i d = 62a i d = 62a v gs = 20v v gs = -20v
      
       
     

 fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 7.0v 6.5v 6.0v 5.5v bottom 5.0v 60s pulse width tj = 25c 5.0v 1 10 100 1000 v ds , drain-to-source voltage (v) 10 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 2 4 6 8 10 12 14 16 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 175c v ds = 50v 60s pulse width 0 20406080100 q g , total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 120v v ds = 75v v ds = 30v i d = 62a 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 5.0v 60s pulse width tj = 175c vgs top 15v 10v 8.0v 7.0v 6.5v 6.0v 5.5v bottom 5.0v -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 2.5 3.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 62a v gs = 10v
      
       
     

 fig 8. maximum safe operating area fig 10. drain-to-source breakdown voltage fig 7. typical source-drain diode forward voltage fig 11. typical c oss stored energy fig 9. maximum drain current vs. case temperature 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 25 50 75 100 125 150 175 t c , case temperature (c) 0 20 40 60 80 100 120 i d , d r a i n c u r r e n t ( a ) -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , temperature ( c ) 140 150 160 170 180 190 200 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e ( v ) id = 3.5ma -20 0 20 40 60 80 100 120 140 160 v ds, drain-to-source voltage (v) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 e n e r g y ( j ) 1 10 100 1000 v ds , drain-to-source voltage (v) 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) operation in this area limited by r ds (on) tc = 25c tj = 175c single pulse 100sec 1msec 10msec dc fig 12. threshold voltage vs. temperature -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.0 2.0 3.0 4.0 5.0 6.0 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a i d = 1.0ma i d = 1.0a
      
       
     

 fig 13. maximum effective transient thermal impedance, junction-to-case 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.0001 0.001 0.01 0.1 1 t h e r m a l r e s p o n s e ( z t h j c ) c / w 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) i (sec) 0.245 0.0059149 0.155 0.0006322 j j 1 1 2 2 r 1 r 1 r 2 r 2 c c ci = i / ri ci= i / ri fig 14. typical avalanche current vs.pulsewidth 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 tav (sec) 0.1 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) allowed avalanche current vs avalanche pulsewidth, tav, assuming ? j = 25c and tstart = 150c. allowed avalanche current vs avalanche pulsewidth, tav, assuming ? tj = 150c and tstart = 25c (single pulse)
      
       
     

  !"#$ %#&%  ' 0 200 400 600 800 1000 di f /dt (a/s) 0 10 20 30 40 50 i r r ( a ) i f = 42a v r = 130v t j = 25c t j = 125c  !"#$ %#&%  ' 0 200 400 600 800 1000 di f /dt (a/s) 0 10 20 30 40 50 i r r ( a ) i f = 62a v r = 130v t j = 25c t j = 125c   !"#$ &(%  ' 
 !"#$ &(%  ' 0 200 400 600 800 1000 di f /dt (a/s) 0 500 1000 1500 2000 2500 q r r ( n c ) i f = 42a v r = 130v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/s) 0 600 1200 1800 2400 3000 q r r ( n c ) i f = 62a v r = 130v t j = 25c t j = 125c
   )   
       
     

 fig 21a. switching time test circuit fig 21b. switching time waveforms fig 20b. unclamped inductive waveforms fig 20a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 22a. gate charge test circuit fig 22b. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 19. *  %#%'"& for n-channel hexfet   power mosfets 
 
  ?  
 
  ?   
  ?  

 
   
  p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period +     + + - + + + - - -        ?      ? 
 !
"#"" ?       $
 %% ? "#""&#   
     d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + - v ds 90% 10% v gs t d(on) t r t d(off) t f   '( 1 )  $
  0.1 %          ! + -    
   ,   
       
     

 

    

  
 to-220ab packages are not recommended for surface mount application.  
      
  irfb4115 irfb4115 g pyww? lc lc part number date code p = lead-free y = last digit of year ww = work week ? = assembly site code international rectifier logo assembly lot code or ywwp lc lc part number date code y = last digit of year ww = work week p = lead-free international rectifier logo assembly lot code
   -   
       
     

 . /   01 $1''
'$ ! '#' ..2$$%  344&
 $  moisture sensitivity level to-220 n/a rohs compliant qualification information ? industrial ? (per jedec jesd47f ?? guidelines) yes qualification level ir world headquarters: 101 n. sepulveda blvd., el segundo, california 90245, usa to contact international rectifier, please visit http://www.irf.com/whoto-call/ revision history date comment ? updated data sheet with new ir corporate template. ? updated package outline & part marking on page 7. ? added bullet point in the benefits "rohs compliant, halogen -free" on page 1. ? updated typo on the fig.16 and fig.17, unit of y-axis from "a" to "nc" on page 5. 11/6/2014 ? added fig 14 - typical avalanc he current vs pulsewidth on page 5. 4/28/2014


▲Up To Search▲   

 
Price & Availability of IRFB4115PBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X